On defining irreducibility

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Defining Irreducibility

This means that for all n ≥ 2, there exists no first-order sentence Fn in the language Ln = (+,−,×,=, 0, 1, In) satisfying the following property: for any real algebraic variety V of R, if we interpret the n-ary predicate In by membership to V then R |= Fn if and only if V is irreducible. Our proof will imply that irreducibility remains undefinable even if we add the exponential function to Ln....

متن کامل

Irreducibility on General Fuzzy Automata

The aim of this paper is the study of a covering of a max-mingeneral fuzzy automaton by another, admissible relations, admissiblepartitions of a max-min general fuzzy automaton,$tilde{delta}$-orthogonality of admissible partitions, irreduciblemax-min general fuzzy automata. Then we obtain the relationshipsbetween them.  

متن کامل

On Hilbert’s Irreducibility Theorem

In this paper we obtain new quantitative forms of Hilbert’s Irreducibility Theorem. In particular, we show that if f(X,T1, . . . , Ts) is an irreducible polynomial with integer coefficients, having Galois group G over the function field Q(T1, . . . , Ts), and K is any subgroup of G, then there are at most Of,ε(H s−1+|G/K|+ε) specialisations t ∈ Zs with |t| ≤ H such that the resulting polynomial...

متن کامل

On the irreducibility of Hecke polynomials

Let Tn,k(X) be the characteristic polynomial of the nth Hecke operator acting on the space of cusp forms of weight k for the full modular group. We record a simple criterion which can be used to check the irreducibility of the polynomials Tn,k(X). Using this criterion with some machine computation, we show that if there exists n ≥ 2 such that Tn,k(X) is irreducible and has the full symmetric gr...

متن کامل

Clique Irreducibility and Clique Vertex Irreducibility of Graphs

A graphs G is clique irreducible if every clique in G of size at least two, has an edge which does not lie in any other clique of G and is clique reducible if it is not clique irreducible. A graph G is clique vertex irreducible if every clique in G has a vertex which does not lie in any other clique of G and clique vertex reducible if it is not clique vertex irreducible. The clique vertex irred...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Comptes Rendus de l'Académie des Sciences - Series I - Mathematics

سال: 2000

ISSN: 0764-4442

DOI: 10.1016/s0764-4442(00)00240-8